r - Calculate Percentage Column for List of Dataframes When Total Value is Hidden Within the Rows -


library(tidyverse) 

i feel there simple solution i'm stuck. code below creates simple list of 2 dataframes (they same simplicity of example, real data has different values)

loc<-c("montreal","toronto","vancouver","quebec","ottawa","hamilton","total") count<-c("2344","2322","122","45","4544","44","9421")  data<-data_frame(loc,count) data2<-data_frame(loc,count) data3<-list(data,data2) 

each dataframe has "total" within "loc" column corresponding overall total of "count" column. calculate percentages each dataframe dividing each value in "count" column total, last number in "count" column.

i percentages added new columns each dataframe.

for example, total last number in column, in reality, may mixed anywhere in column , can found corresponding "total" value in "loc" column.

i use purrr , tidyverse:

below example of code, i'm stuck on percentage...

data3%>%map(~mutate(.x,paste0(round(100*  (missing percentage),2),"%")) 

this solution uses base-r:

for (i in seq_along(data3)) {   data3[[i]]$count <- as.numeric(data3[[i]]$count)   n <- nrow(data3[[i]])   data3[[i]]$perc <- data3[[i]]$count / data3[[i]]$count[n] }   > data3 [[1]] # tibble: 7 x 3         loc count        perc       <chr> <dbl>       <dbl> 1  montreal  2344 0.248805859 2   toronto  2322 0.246470651 3 vancouver   122 0.012949793 4    quebec    45 0.004776563 5    ottawa  4544 0.482326717 6  hamilton    44 0.004670417 7     total  9421 1.000000000  [[2]] # tibble: 7 x 3         loc count        perc       <chr> <dbl>       <dbl> 1  montreal  2344 0.248805859 2   toronto  2322 0.246470651 3 vancouver   122 0.012949793 4    quebec    45 0.004776563 5    ottawa  4544 0.482326717 6  hamilton    44 0.004670417 7     total  9421 1.000000000 

Comments

Popular posts from this blog

android - InAppBilling registering BroadcastReceiver in AndroidManifest -

python Tkinter Capturing keyboard events save as one single string -

sql server - Why does Linq-to-SQL add unnecessary COUNT()? -