How to plot mixed-effects model estimates in ggplot2 in R? -
i have 2x2x2 factorial design 1 random effect. data (dat) follows:
colour size level marbles set blue large low 80 1 blue large high 9 2 blue small low 91 1 blue small high 2 1 white large low 80 2 white large high 9 1 white small low 91 2 white small high 2 1
i want plot 2 models:
mod1 <- lmer(marbles ~ colour + size + level + colour:size + colour:level + size:level + (1|set), data = dat) mod2 <- lmer(marbles ~ colour + size + level +(1|set), data = dat)
i use following code plots:
pd <- position_dodge(0.82) ggplot(dat, aes(x=colour, y=marbles, fill = level)) + theme_bw() + stat_summary(geom="bar", fun.y=mean, position = "dodge") + stat_summary(geom="errorbar", fun.data=mean_cl_boot, position = pd)+ + facet_grid(~size)
i'm unsure on how replace terms coefficients model estimates. ideas on how can plot estimates of final model in gpplot2? helpful if can suggest easy way print model estimates too
in addition, there anyway can ggplot2 display bars on top of graphs showing interactions significant?
here's 1 approach plotting predictions linear mixed effects model factorial design. can access fixed effects coefficient estimates fixef(...)
or coef(summary(...))
. can access random effects estimates ranef(...)
.
library(lme4) mod1 <- lmer(marbles ~ colour + size + level + colour:size + colour:level + size:level + (1|set), data = dat) mod2 <- lmer(marbles ~ colour + size + level +(1|set), data = dat) dat$preds1 <- predict(mod1,type="response") dat$preds2 <- predict(mod2,type="response") dat<-melt(dat,1:5) pred.plot <- ggplot() + geom_point(data = dat, aes(x = size, y = value, group = interaction(factor(level),factor(colour)), color=factor(colour),shape=variable)) + facet_wrap(~level) + labs(x="size",y="marbles")
these fixed effects predictions data presented in post. points colors overlapping, depend on data included in model. combination of factors choose represent via axes, facets, or shapes may shift visual emphasis of graph.
Comments
Post a Comment