python - Error in my implementation of the Baum-Welch algorithm -


i having trouble implementing discrete hmm in python using numpy. have been following guide, implement sum-exp-log trick in addition (this not implemented training , b wasn't sure how trick applied process. implemented forwards , backwards probabilities).

i forwards , backwards probability calculations correct because verified results “toy” data used in this explanation of forwards-backwards algorithm.

when using baum-welch train transition , emission matrices (a , b in code respectively), run trouble. is, must set laplace smoothing parameter ridiculously low value. if set 0, emission , transition matrices filled nans after few iterations (normally warning divide 0 encountered in numpy.log). if set laplace smoothing parameter high, transition , emission matrices not change @ each iteration. when appropriate laplace smoothing value chosen avoids both issues mentioned, hmm not converge – probability of training set decreases each iteration, hops higher probability (still small one), , continues decrease again. also, transition matrix, a, ends being filled exact same value. if not update value of emission matrix, b, not run these issues – probability of training set increases @ each training iteration, not nans in transition matrix, nor become filled exact same value. such, assume issue somewhere in function step_b(). here relevant code, have choose laplace smoothing value of 10^-300 not run problems mentioned training sequence length of 100:

def train(self, max_iter):     iter in range(0, max_iter):         self.train_step()  def train_step(self):     alphas = self.calc_forwards(self.x, as_log = false)     betas = self.calc_backwards(self.x, as_log = false)     gammas = self.calc_gammas(self.x, alphas, betas)     self.a = self.step_a(gammas)     self.b = self.step_b(gammas, self.x)     prob_of_x = self.probability_of_sequence(self.x)     print("prob of x: ", prob_of_x)  def step_a(self, gammas):     a_new = np.zeros(self.a.shape, dtype = np.float64)     in range(0, a_new.shape[0]):         j in range(0, a_new.shape[1]):             a_new_numerator = np.sum(gammas[:,i,j])             a_new_denominator = np.sum(np.sum(gammas[:,i,:], axis = 0))             a_new[i,j] = (a_new_numerator + self.laplace_smooth_param)/(a_new_denominator + self.laplace_smooth_param * self.num_states)     return a_new  def step_b(self, gammas, x):     b_new = np.zeros(self.b.shape, dtype = np.float64)     j in range(0, b_new.shape[0]):         k in range(0, b_new.shape[1]):             numerator_sum_coefficients = (x == k).astype(np.int)             b_new_numerator = np.sum(np.sum(gammas[:,:,j] * numerator_sum_coefficients[:,np.newaxis], axis = 0))             b_new_denominator = np.sum(np.sum(gammas[:,:,j], axis = 0))             b_new[j,k] = (b_new_numerator + self.laplace_smooth_param)/(b_new_denominator + self.laplace_smooth_param * self.num_observables)     return b_new  def calc_gammas(self, x, alphas, betas):     gammas = np.zeros((alphas.shape[0],) + self.a.shape, dtype = np.float64)     t in range(0, gammas.shape[0]):         in range(0, gammas.shape[1]):             j in range(0, gammas.shape[2]):                 gammas[t,i,j] = alphas[t,i] * self.a[i,j] * self.b[j,x[t]] * betas[t+1,j]     return gammas 


Comments

Popular posts from this blog

android - InAppBilling registering BroadcastReceiver in AndroidManifest -

python Tkinter Capturing keyboard events save as one single string -

sql server - Why does Linq-to-SQL add unnecessary COUNT()? -